Snappers

Snappers, part of the T5 materials, are short, whole-class interactive activities based around key areas of mathematics pitched at levels 4 and 5.

Snappers provide starter activities for lessons. They can be run directly through a computer or copied onto an OHT. Alternatively, in many cases, the idea can be quickly drawn onto a board. The teacher support material gives ideas for the use and development in the classroom of the OHTs provided.

1	Hundreds and thousands	Place value
2	Sports results	Place value
3	Stepping stones to percentages	Percentages
4	Stepping stones to fractions	Fractions
5	Year 9 maths	Ratio
6	Arrows	Sequences
7	Twelve days of Christmas	Expressions and equations
8	Substitution spider	Substitution
9	Halving rectangles	Area and perimeter
10	Nets of cuboids	Nets and solids
11	Angles and transformations	Angles and symmetry
12	Transformations	Transformations
13	Potato bar chart	Interpreting data
14	Potato pie chart	Pie charts
15	Fairground games	Probability
16	Mean maths	Averages

These teaching notes give learning objectives, suggested questions, and suggestions for development.

The T5 plan suggests a programme for the use of Snappers combined with the other resources, but this is only a suggestion and these activities can be used to enhance all mathematics teaching in Year 7, Year 8, Year 9 and beyond.

SNAPPERS	Place value	NOTES			
SNAPPER 1	Hundreds and thousands (place value)				
	Objectives				
	 Multiply and divide by 10, 100 and 10 	-			
	 Understand the impact of multiplying or dividing a number by 10, 100 and 1000 				
	Suggested questions	Suggestions for development			
	 What will happen to the answer 4032 if we use: 	 Link to problems with metric units. Extend to factors other than 10, 100 			
	– 5.6 rather than 56	and 1000. For example:			
	– both 5.6 and 7.2	If $56 \times 72 = 4032$, what is 56×36 ?			
	 560 (10 times bigger) and 7.2 (10 times smaller)? 	3 Keep the final answer and explore relationships. For example:			
	and so on	If $56 \times 72 = 4032$, then $28 \times ? = 4032$			
	2 What happens to the unit value of each digit in 4032 when you decide to make it 10 times bigger? 100 times smaller?				
	3 Is it really the decimal point or the digits moving?				
SNAPPER 2	Sports results (place value)				
	Objectives				
	 Order decimal numbers to at least two decimal places 				
	 Add and subtract decimal numbers with at least two decimal places 				
	 Multiply and divide by 10, 100 and 1000; convert between metric units of length 				
	Suggested questions	Suggestions for development			
	1 Can you complete the sports results?	1 Ask further conversion questions.			
	Javelin:	2 Practise rounding. Use number lines			
	– Which digit do you look at first?	to decide how to round sports results			
	– If that's the same, what next?	to 1 d.p., to the nearest whole number For example:			
	– Why is it tempting to say B won?	If all results were rounded to the			
	Long jump and pole vaulting:	nearest whole number, which results			
	 Why is it difficult to compare 5.90 m and 5.095 m? 	would look the same? What if you rounded to 1 d.p.?			
	– Which unit shall we agree on?	3 Consolidate written methods of			
	2 What is the total distance thrown by all five javelin competitors?	addition and subtraction using questions as above.			
	3 By how much did the javelin thrower win?				

SNAPPER 3 Stepping stones to percentages (percentages)

Objective

Calculate percentages of a quantity

Suggested questions

Choose the starting amount, for example £360.

- Encourage memorising and rapid recall:
 What is 5% of this? 10%? 20%? 25%? 33¹/₃%? 50%?
- 2 Use to derive other facts:
 - halving and doubling:
 If 10% is £36, what is 20%?
 40%? 60%?
 If 25% is £90, what is 12¹/₂%?
 - adding or subtracting from one whole:
 If 1% is £3.60, what is 99%?
 101%?
- 3 Which stepping stone might I start at if I want to find: $12\frac{1}{2}$ %? $2\frac{1}{2}$ %? 45%?

Suggestions for development

Use one set of stepping stones to work out awkward percentages:

 $17\frac{1}{2}\% \text{ of } \pounds 360 = (10 + 5 + 2\frac{1}{2})\%$ of £360 = £36 + £18 + £9 = £63

Then use it to solve simple word problems.

2 Consolidate by using other starting amounts.

SNAPPER 4

Stepping stones to fractions (fractions)

Objective

Calculate fractions of a quantity

Suggested questions

Choose the starting amount, for example $\pounds 60$ or $\pounds 240$.

- 1 Encourage memorising and rapid recall: What is $\frac{1}{2}$ of this? $\frac{1}{3}$? $\frac{1}{4}$? $\frac{1}{5}$? $\frac{1}{10}$? $\frac{1}{100}$?
- **2** Use to derive other facts:
 - halving and doubling: If $\frac{1}{10} = \pounds 24$, what is $\frac{2}{10}$ or $\frac{1}{5}$? $\frac{3}{10}$? $\frac{1}{20}$?
 - adding or subtracting from one whole:

If $\frac{1}{10} = \pounds 24$, what is $1\frac{1}{10}?\frac{9}{10}?$

3 Which stepping stone might I start at if I want to find: $\frac{3}{8}$? $1\frac{1}{4}$? $\frac{1}{6}$?

Suggestions for development

 Use one set of stepping stones to work out awkward fractions:

$$\frac{17}{20}$$
: find $\frac{1}{10} \rightarrow \frac{1}{20} \rightarrow \frac{17}{20}$

Then use it to solve simple word problems.

2 Consolidate with other starting amounts.

SNAPPER 5

Year 9 maths (ratio)

Objectives

- Understand the idea of ratio and use ratio notation
- Simplify a ratio to an equivalent ratio by cancelling

Suggested questions

Check for understanding and accurate use of language for ratio. For example:

- 1 How many girls and boys are there altogether in 98?
- 2 What is the ratio of girls to boys in the whole class? How do you write this? What is the ratio in its simplest form?
- 3 What is the ratio of boys to girls? How do you write this? What is the ratio in its simplest form?

Suggestions for development

- 1 Use the resource sheet and extend the table to 9F and 9G (the teacher or pupils could choose ratios).
- 2 What if each Year 8 class has 36 pupils? Work out a similar table for 8A to 8G.
- **3** Extend the activity to more demanding ratios.

SNAPPER 6 Arrows (sequences)

Objectives

- Find terms in a sequence from its position and vice versa
- Find the rule for sequences derived from practical contexts

Suggested questions

- 1 Look for spatial and number patterns.
 - Which part of the arrow is being added each time?
 - Does this fit in with the number pattern?
 - How is each term changing each time? (increasing by 4)
 What does this tell you about the rule? (includes × 4)
 Where does the +2 come from? (in first arrow)
- **2** Use the rule to find *a* from *m* and vice versa.
 - How many matches are needed for 10 arrows?
 - How many arrows can be made with 102 matches?

Suggestions for development

Generate other sequences from practical contexts and explore the rules.

SNAPPER 7 T	welve days of Christmas (exp	ressions and equations)		
C	Objectives			
٠	 Represent words with symbols and vice versa (focus of activity) Form and solve simple equations Collect like terms 			
٠				
٠				
٠	 Substitute values in an expression or equation 			
S	uggested questions	Suggestions for development		
1	Use the first OHT to connect algebraic with arithmetic rules: If 2 less than 6 is $6 - 2$, then what is 2 less than <i>n</i> ?	 Using the resource sheets: Find expressions for the number or presents for all twelve days (there are two possible answers for the 		
2	Use OHT 1 to address common exam errors: Which expressions are most easily confused? n^2 , $2n$, $\frac{n}{2}$, $n + 2$, $n - 2$ 2n + 6 and $2(n + 6)n - 2$ and $2 - n$	 8th day – explain why they are equal). Practise forming expressions: match each word and algebraic expression. Practise substitution: If n = 4, how many presents did I get each day? 		
3	Use OHT 1 to practise collecting like terms, for example: How many presents in total were there on the 3rd and 7th days? Use OHT 2 to practise substitution, for example: If $x = 10$, how many presents did I get each day?	 If x = 10, how many presents did I get each day? 2 Design your own puzzle for the twelve days of Christmas, choosing a value for <i>n</i> or <i>x</i> first (the number of presents on the 1st day). Exchange puzzles with your partner and see if you can work out each expression, 		
5	Use OHT 2 to clarify the meaning of x^2 : On the 9th day, I got twice the square of the number on the 1st day. Which step comes first: multiplying by 2 or the squaring? How would you write this? Explain how you would say $(2x)^2$. Explain how it differs from $2x^2$.	and find the number of presents on the 1st day.		
6	Use both OHTs to form and solve equations, for example: I get 16 presents on the 7th day. What is <i>n</i> ? I get 42 presents on the 7th day. What is <i>x</i> ?			

SNAPPER 8 Sub

Substitution spider (substitution)

Objective

Substitute values in an expression

Suggested questions

- Choose a positive integer for the starting number:
 What is 2n if n = 4? So what is 2n + 1?
- 2 Choose a negative integer: What is 3 - n if n = -4?
- 3 Choose a fraction: What is 3n if $n = \frac{1}{2}$? If $n = \frac{1}{4}$?

Suggestions for development

- Extend the expressions on OHT 2 onto an A3 sheet, so that pupils (working in pairs) can explore a wider variety of expressions.
- **2** I have 3(n + 1) 2. Where might I have started from?
- Choose one starting expression and ask pupils to work out the most challenging expression for the teacher to work out – pupils still have to check that it's right!

SNAPPER 9 Halving rectangles (area and perimeter)

Objective

Calculate the areas and perimeters of rectangles (and triangles)

Suggested questions

- 1 In addition to those on the OHT:
 - What do the 6 cm by 4 cm and the 12 cm by 2 cm rectangles have in common? (area) What is different? (perimeter).
 - Why does 4 × 6 give the correct area? (link to four rows of six 1 cm squares)
 - Which is halved when the rectangle is cut in half: its area or its perimeter? Why?
- What if you halve the starting shape four times?How would you do it to get the rectangle with the biggest perimeter?And the biggest area?
- **3** What if the shape needn't be a rectangle? (e.g. triangles)

- 1 Use the halving rule to find areas of triangles, using the link to understand that $A = \frac{1}{2}b \times h$ is derived from $A = l \times w$ for the original rectangle.
- 2 Extend to area calculations for compound shapes (made from rectangles).
- **3** Extend to area calculations for parallelograms.

SNAPPERS	Nets and solids/Angles and symmetry		NOTES		
SNAPPER 10	Nets of cuboids (nets and solid	lc)			
		13)			
	Objective				
	 Use 2-D representations of 3-D shapes 				
	Suggested questions	Suggestions for	development		
	1 How many faces are missing?	1 Explore other cub	ooids; extend to		
	2 Visualise how to fold up this net. If this face (indicate) is the base, which is the front, left, right,?	cubes, triangular pyramids. Include and 3-D to 2-D.			
	3 In how many different places might	2 Calculate volume	s.		
	the 5th face go? Draw one of the nets.	3 Consider other 2	-D representations:		
	4 If the 5th face goes here (indicate), where might the 6th face go? Draw a net.	plans and elevation drawings.	ons; isometric		
	5 When the net is folded up, which corner does this corner meet?				
SNAPPER 11	Angles and transformations (angles and symmetry)				
	Objectives				
	 Recognise and visualise translations, refl 	ections and rotations			
	 Deduce angles from symmetry properties 				
	Suggested questions	Suggestions for	development		
	 How many lines of symmetry does this shape have? What is its order of rotation symmetry? 	Consider a wider rar problems involving s	ige of angle symmetry properties.		
	2 What angles do you know? How did you work them out?				

SNAPPER 12	Transformations (transformati	ons)		
	Objectives			
	• Reflect and rotate 2-D shapes			
	 Recognise and visualise translations, reflections and rotations 			
	Suggested questions	Suggestions for development		
	 Draw (if possible, on squared mini- whiteboards) what happens to shape A if you: 	 Consider simple combined translations, for example: Which single translation replaces 		
	 reflect it in the <i>y</i>-axis in the <i>x</i>-axis in line RS (tip: turn the grid so that RS is horizontal or vertical) 	these two translations?2 Coordinates: What are the coordinates of the four vertices of A?		
	 translate it 3 to the right and 4 down 	What happens to point M after the following transformations?		
	 rotate it 90° anticlockwise about O … 	3 Enlargements: enlarge the shape by scale factors of 2, 3, 4,		
	 enlarge it so that it is twice as big (no centre). 			
	2 What did I do to shape A to get B (draw)?			
	3 What are the coordinates of point M? Which transformation will move this point to (1, ⁻ 3)?			
SNAPPER 13	Potato bar chart (interpreting	data)		
	Objective			
	 Interpret and draw inferences from a bar chart 			
	Suggested questions	Suggestions for development		

- 1 What was the most popular type of potato?
- **2** How many preferred chips ? ... baked potatoes? ... mashed? ... none?
- 3 How many teachers were asked altogether?
- 4 What fraction preferred each type of potato?

- 1 Compare two or more sets of data tables, graphs and diagrams.
- 2 Link with the comparison of data using statistics.

SNAPPER 14 Potato pie chart (pie charts)

Objective

- Spectre
- Interpret and draw inferences from a pie chart

Suggested questions

- What was the most popular type of potato for teachers at school B?
- 2 If there were 40 teachers in the survey:
 - estimate how many preferred baked potatoes.
 - estimate how many preferred chips.
- 3 Estimate what percentage of teachers preferred chips.
- 4 What can you say about the number of teachers who preferred mashed and baked potatoes?
- 5 If 8 teachers chose mashed potato, how many teachers chose baked potatoes, chips, none? How many teachers altogether were surveyed?
- 6 Using Snappers 13 and 14: Which fraction is the same for both schools?
 What are the main differences between teachers' preferences at schools A and B?
- 7 Do you think that a survey showing the types of potatoes preferred by pupils would be different to one on teachers' preferences?

- 1 Compare two or more sets of data tables, graphs and diagrams.
- 2 Link with the comparison of data using statistics.
- 3 Use Snappers 13 and 14 to explore the main advantages and disadvantages of pie charts versus bar charts. Hence explain the differences in their uses.

SNAPPER 15

Fairground games (probability)

Objectives

- Find probabilities based on equally likely outcomes in simple contexts
- Know that if the probability of an event is *p*, then the probability of it not occurring is (1 *p*)

Suggested questions

- 1 Hex-a-Spin
 - What is the probability of winning £5? ... of winning more than £1?
- 2 Oct-a-Spin
 - Complete the spinner so that the probability of winning less than £5 is ¹/₂ and less than £2 is ¹/₄. (You can use any of £1, £2, £5, £10.)
 Is there more than one solution?
 (All solutions have
 1, 1, 2, 2, ..., ..., ...)
 - What if the probability of getting £5 is 25% and getting more than £2 is $\frac{3}{4}$? (All solutions have 5, 5, 10, 10, 10, 10, ..., ...)

- 1 Design games to meet a range of criteria, as with Oct-a-Spin.
- 2 Use other contexts, such as dice, cards, coloured counters, names in a hat, ...

SNAPPER 16

Mean maths (averages)

Objective

• Find the mean, median, mode and range of a list of numbers

Suggested questions

- Highlight correct language use, for example: mean (not 'mean average') range (e.g. 4, not 6–2).
- 2 What's the lowest mean you can find of any three results? And the range? What's the highest mean of any three results? And the range?
- 3 (Using the three boxes) Mr Cullen notices the following statistics. Can you work out what the three numbers are?
 - Three numbers have a mean of 8 (6, 9, 9).
 - Three numbers have a mean of 4 (1, 5, 6).
 - Three numbers have a median of 6 and range of 8 (1, 6, 9).
 - Three numbers have a median of 6 and a range of 4 (5, 6, 9).
 - Three numbers have a mode of 9 and a range of 8 (1, 9, 9).
 - Three numbers have a median of 6 (1, 6, 9 or 5, 6, 9).

- 1 Use Mean maths 2 to explore other number lists.
- **2** Find the mean, mode, median and range in other contexts.
- **3** Compare two sets of data using one average and the range.