

Functional Skills Certificate

Functional Mathematics 9305 Pilot Specification 2008

Level 2

SPECIMEN ASSESSMENT MATERIALS

Further copies of this booklet are available from:
The GCSE Mathematics Department, AQA, Devas Street, Manchester, M15 6EX
Telephone: 01619573852 Fax: 01619573873

Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Contents

Unit 1 Functional Mathematics
Paper 1 Competency Specimen Paper 5
Paper 1 Competency Mark Scheme 15
Paper 2 Functionality Specimen Paper 19
Paper 2 Functionality Mark Scheme 31
Pre Release Data Sheet (Exam version) 39

| Surname | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Centre Number | | | | | | | | |

General Certificate of Secondary Education

MATHEMATICS (PILOT)
93001/1
Unit 1 Functional Mathematics

Paper 1 Competency Test

Non-Calculator

Specimen Paper (Curriculum Pathways Pilot) 2008

For this paper:	
$\bullet \quad$ You must not use a calculator	

Time allowed: 40 minutes

Instructions

- Use black ink or ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.

For Examiner's Use	
Pages	Mark
3	
$4-5$	
$6-7$	
$8-9$	
10	
TOTAL	
Examiner's Intitals	

- Answer the questions in the spaces provided.
- Do all rough work in this book.

Information

- The maximum mark for this paper is 30 .
- The marks for questions are shown in brackets.

Answer all questions in the spaces provided.

1 What is 35.72 to the nearest whole number?
Answer .. (1 mark)

2 Write these temperatures in order from coldest to warmest.

$$
\begin{array}{llll}
13^{\circ} \mathrm{C} & -13^{\circ} \mathrm{C} & 31^{\circ} \mathrm{C} & -31^{\circ} \mathrm{C}
\end{array}
$$

Answer \qquad

3 Write $\frac{4}{5}$ as a percentage.
\qquad

Answer

\qquad \%

4 Ben has 72 pence.
What is the smallest number of coins that he could have?
\qquad

Answer

5 Luke is paid $£ 4.50$ per hour.
He works for 8 hours.
How much is he paid?
\qquad

$$
\text { Answer } £ \text {. }
$$

6 A parcel weighs 0.45 kilograms.
What is its weight in grams?

Answer grams

7 You are given that 1 foot $=30 \mathrm{~cm}$
How many centimetres are there in $3 \frac{1}{2}$ feet?
\qquad
\qquad
Answer \qquad cm

8 Jack uses the formula $C=\frac{1}{2} W+2$ to work out the charge for cleaning windows. W is the number of windows and C is the charge in pounds.

How much does Jack charge for cleaning 8 windows?
\qquad
\qquad
Answer $£$

9 Circle the fraction that is equivalent to 60%.

$$
\frac{6}{100} \quad \frac{1}{2} \quad \frac{3}{4} \quad \frac{1}{6} \quad \frac{3}{5}
$$

10 The table shows the number of hours which Farrah works on Saturday and Sunday.

Day	Saturday	Sunday
Hours	$6 \frac{1}{2}$	$4 \frac{3}{4}$

How many hours does she work altogether?
\qquad

Answer \qquad hours

11 The graph gives information about the sizes of households in Great Britain in 2000.

Write down the percentage of households with 4 people.
Answer
\%
(1 mark)

12 A fair dice is thrown.
What is the probability of getting a number greater than 4 ?
\qquad

Answer \qquad

13 The diagram shows a cuboid.

Not drawn accurately

Work out its volume.
\qquad
\qquad cm^{3}

14 Use the conversion graph to work out the number of kilometres that equal 80 miles.

Answer \qquad km (1 mark)

15 What is two-thirds of 150 ?
\qquad
\qquad

> Answer ... (1 mark)

16 What number is exactly halfway between 5 and -3 ?
\qquad
Answer

17 The probability that it will rain tomorrow is 0.7
What is the probability that it will not rain tomorrow?
\qquad
Answer
(1 mark)

18 A recipe for 8 people includes
1 kg of potatoes
25 g of plain flour
400 g of cabbage
240 g of mince.
How many grams of cabbage are needed for 10 people?
\qquad
\qquad
Answer g

19 Ten numbers have a mean of 40
What is the total of the ten numbers?
\qquad
Answer

20 On a scale drawing the length of a room is 5 centimetres.
The scale is $1: 200$

Scale 1: 200

What is the actual length of the room?
Give your answer in metres.
\qquad
Answer \qquad metres

21 The diagram shows a scale for litres and pints.

Estimate the number of millilitres in half a pint.
Give your answer to the nearest 10 millilitres.
\qquad
Answer \qquad millilitres

22 Work out 5% of $£ 110000$
\qquad
\qquad

> Answer £

23 Use the exchange rate $€ 1=£ 0.65$ to convert $€ 15$ to pounds.
\qquad

Answer $£$

(1 mark)

24 Carpet tiles are squares of side 50 centimetres.

How many carpet tiles are required to cover a square floor of side one metre?
\qquad
Answer \qquad

2540 miles per hour and 64 kilometres per hour are the same speed.
Convert 10 miles per hour to kilometres per hour.
\qquad
\qquad
Answer \qquad km/h

26 The diagram shows a gauge for a petrol tank.
The tank holds 12 gallons when full.

Work out the number of gallons of petrol left in the tank.
\qquad
\qquad
Answer
gallons

27 Work out 926-388
\qquad
Answer

28 This cuboid has a continuous line drawn on it across four faces.
It is a straight line on all four faces.

Which of these diagrams shows the face seen from the direction of the arrow?

A

B

C

D

E

Answer

29 The area of a triangle $=\frac{1}{2} \times b \times h$

The area of a triangle $=30 \mathrm{~cm}^{2}$.

The height, $h=5 \mathrm{~cm}$.
Find the value of b.
\qquad
\qquad

> Answer
cm

30 The table shows the results of a survey of where 200 people went on holiday.

Country	Number of people
Spain	110
Scotland	50
USA	40

What percentage of people in the survey went to Scotland?
\qquad
\qquad
\qquad

END OF QUESTIONS

General Certificate of Secondary Education

Mathematics 9307

(Including Functional Mathematics)
Specimen Mark Scheme

Paper 1 Competency

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Paper 1 Competencey

Question	Answer	Mark	Comment
1	36	B1	
2	$-31,-13,13,31$	B1	Ignore ${ }^{\circ} \mathrm{C}$
3	80	B1	
4	3	B1	Accept 50 (p), 20 (p), 2 (p)
5	36	B1	
6	450	B1	
7	105	B1	
8	£6	B1	Do not accept $£ 6.0$
9	$\frac{3}{5}$ identified	B1	
10	$11 \frac{1}{4}$	B1	oe Accept 11.25, 11.15, 11:15, 1115
11	12	B1	Accept 14 to 16 inclusive
12	$\frac{2}{6}$	B1	oe $0.33(\ldots)$
13	30	B1	
14	130	B1	
15	100	B1	
16	1	B1	
17	0.3	B1	$\frac{3}{10} \text { or } 30 \%$
18	500	B1	
19	400	B1	
20	10	B1	
21	280	B1	Accept 270, 290, 300
22	5500	B1	

Question	Answer	Mark	Comment

$\mathbf{2 3}$	9.75	B1	
$\mathbf{2 4}$	4	B1	
$\mathbf{2 5}$	16	B1	
$\mathbf{2 6}$	3	B1	
$\mathbf{2 7}$	538	B1	
$\mathbf{2 8}$	E	B1	
$\mathbf{2 9}$	12	B1	
$\mathbf{3 0}$	25	B1	

| Surname | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Centre Number | | | | | | | | |

General Certificate of Secondary Education

MATHEMATICS (PILOT)
93001/2
Unit 1 Functional Mathematics
Paper 2 Functionality Test
Calculator allowed

ASSESSMENT and
OUALIFICATIONS
ALLIANCE

Specimen Paper (Curriculum Pathways Pilot) 2008

For this paper: - a calculator - mathematical instruments	

Time allowed: 1 hour 15 minutes

Instructions

- Use black ink or ball-point pen. Draw diagrams in pencil.
- Fill in the boxes at the top of this page.
- Answer all questions.

For Examiner's Use	
Question	Mark
1	
2	
3	
4	
5	
TOTAL	
Examiner's Initials	

- Answer the questions in the spaces provided.
- Use a calculator where appropriate.
- Do all rough work in this book.
- If your calculator does not have a π button, take the value of π to be 3.14 unless another value is given in the question.

Information

- The maximum mark for this paper is 60 .
- The marks for questions are shown in brackets.
- You may ask for more answer paper, graph paper and tracing paper. This must be tagged securely to this answer book.

Advise

- In all calculations, show clearly how you work out your answer.

Answer all questions in the spaces provided.

1 Holiday Jobs

You will need to use the Data sheet for Holiday Jobs to answer this question.
(a) Ed is 13 years old.

What is the maximum number of hours that he can work in one week?
Answer
hours
(1 mark)
(b) Maria is 15 years old.

The table shows the hours she works from Monday to Thursday.
She does not work on Saturday or Sunday.

Day	Monday	Tuesday	Wednesday	Thursday	Friday
Hours	7	8	8	5	

What is the greatest number of hours she can work on Friday?
\qquad
\qquad
Answer \qquad hours
(c) Jenny is 17 years old.

She does not work on Friday or Saturday.
Her job pays the minimum wage.
What is the most she can earn in a week?
\qquad
\qquad
\qquad
Answer $£$
(d) Adnan is 14 years old.

The table shows the hours he has worked on the first four days of the week.

Day	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Hours	5	2	4	5			

He wants to work the maximum number of hours in the week that he can.
Complete the table to show the number of hours he could work on Friday, Saturday and Sunday.
\qquad
(e) Stacey and Ray both have a weekend holiday job.

They work on Saturdays and Sundays for the maximum time allowed.
Stacey is 14 years old and is paid $£ 2.50$ per hour.
Ray is 16 years old and is paid the minimum wage.
Stacey works for 6 weeks and Ray works for 5 weeks.
Who earns the most?
You must show your working.
\qquad
\qquad
\qquad
Answer \qquad
(f) Tony is 19 years old.

He works 21 hours altogether from Monday to Friday.
He works 4 hours on Saturday.
His pay is $£ 4.50$ per hour for Monday to Friday.
On Saturday he is paid an extra 50% per hour.
How much does he earn for the whole week?
\qquad
\qquad
\qquad

2 Body-Mass Index

You will need to use the Data sheet for Body-Mass Index to answer this question.
(a) Nicola is classified as overweight.

What is the range of her BMI?
Answer \qquad to \qquad
(b) Bronwen has a BMI of 22.

How is she classified?
Tick the correct box.

Underweight

Healthy

Overweight

Obese (1 mark)
(c) Jack has a body mass of 60 kg and he is 1.55 m tall.

Use the graph to find his BMI.
Answer \qquad
(d) (i) Katerina has a body mass of 83 kg and is 1.75 m tall.

Use the formula to calculate her BMI.
\qquad
\qquad
\qquad
Answer \qquad
(ii) How is Katerina classified?

Tick the correct box.

Underweight

Healthy

Overweight

Obese
(e) Pierre is 1.90 m tall.

He is classified as healthy.
Use the graph to estimate his minimum and maximum possible body mass.

> Answer Minimum ... kg Maximum .. kg (2 marks)
(f) William is 1.95 m tall and has a body mass of 62 kg .

He is classified as underweight.
He wants to be classified as healthy on the BMI graph.
How much body mass does he need to gain?
Give your answer to the nearest kilogram.
\qquad
\qquad
Answer ... kg (2 marks)
(g) (i) Michael has a BMI of 23 and he is 1.80 m tall.

Work out his body mass.
\qquad
\qquad
\qquad
Answer ... kg (3 marks)
(ii) Paulo has the same body mass as Michael but he is taller.

How does this affect his BMI?
You must explain your answer.
\qquad
\qquad
\qquad

3 Booklets

You can make a four-page booklet by folding a single sheet of paper in two as shown.

You can make an 8-page booklet by folding two sheets of paper and placing one inside the other as shown.

(a) How many sheets of paper do you need to make a 20-page booklet?

Answer \qquad
(b) What are the two page numbers at the centre of a 40-page booklet?
\qquad
Answer \qquad and \qquad (1 mark)
(c) Explain why it is not possible to make a booklet with an odd number of pages.
\qquad
\qquad
(d) Here is the page layout for an 8-page booklet.

Front and back pages

Inside front and back pages

Centre pages
Write the page numbers on the diagrams.
(e) Here is a single sheet for a 16-page booklet. One page is numbered.

Write the page number on the other page.
(f) Here is a single sheet from a booklet.

How many pages does this booklet have altogether?
\qquad
\qquad
\qquad

4 Weather

You will need to use the Data sheet for Weather to answer this question.
(a) Compare the wind speeds forecast for Leeds and Paris on Saturday.
\qquad
\qquad
(b) How many more sunny days are forecast in Paris than in Leeds?

> Answer
(c) To go ballooning

The wind speed must be less than 10 mph There must be no cloud Visibility must be good

Pierre wants to go ballooning in Paris on Tuesday.
According to the forecast, this will not be possible.
Explain why.
\qquad
\qquad
(d) (i) Which day shows the highest day time temperature in Leeds?

Answer
(ii) Which day shows the lowest night time temperature in Leeds?

Answer
(e) To work out the daily variation in temperature

Subtract the minimum night time temperature from the maximum day time temperature on the same day.
(i) Work out the daily variation in temperature forecast for Saturday in Leeds.
\qquad
Answer \qquad degrees
(ii) On which day and in which city is the daily variation in temperature the smallest?
\qquad
Answer Day
City (1 mark)
(iii) According to the forecast, which city will have the largest average daily variation in temperature?
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
Answer
(4 marks)

5 Household items

The bar chart compares the percentage of households with different items in 1998-99 and in 2004-05.

(a) What percentage of households had a tumble dryer in 2004-05?
Answer .. \% (1 mark)
(b) Identify each of these items from the descriptions.
(i) The percentage of households with this item in 1998-99 was nearly 80%.
Answer .. (1 mark)
(ii) The percentage of households with this item approximately doubled between 1998-99 and 2004-05.

Answer \qquad (1 mark)
(iii) The percentage of households with this item increased by approximately five times between 1998-99 and 2004-05.

Answer \qquad (1 mark)
(c) (i) Describe how the percentage of households with mobile phones changes between 1998-99 and 2004-05.
\qquad
\qquad
(ii) Daniel says that the percentage of households with mobile phones will double over the next five years.

Explain why this is not possible.
\qquad
\qquad
(d) The table gives more information about households with telephones.

Year	Total number of households (nearest million)	Households with a telephone
$1998-99$	20	95%
$2004-05$	25	93%

Use the information to calculate the difference between the number of households with telephones in 1998-99 and 2004-05?
You must show your working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

General Certificate of Secondary Education

Mathematics 9307

(Including Functional Mathematics)
Specimen Mark Scheme

Paper 2 Functionality

Mark Scheme

2008 examination - June series

Mark schemes are prepared by the Principal Examiner and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation meeting attended by all examiners and is the scheme which was used by them in this examination. The standardisation meeting ensures that the mark scheme covers the candidates' responses to questions and that every examiner understands and applies it in the same correct way. As preparation for the standardisation meeting each examiner analyses a number of candidates' scripts: alternative answers not already covered by the mark scheme are discussed at the meeting and legislated for. If, after this meeting, examiners encounter unusual answers which have not been discussed at the meeting they are required to refer these to the Principal Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of candidates' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available to download from the AQA Website: www.aqa.org.uk
Copyright © 2007 AQA and its licensors. All rights reserved.

COPYRIGHT

AQA retains the copyright on all its publications. However, registered centres for AQA are permitted to copy material from this booklet for their own internal use, with the following important exception: AQA cannot give permission to centres to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Set and published by the Assessment and Qualifications Alliance.

Paper 2 Functionality

Question	Answer	Mark	Comment

1(a)	25	B1	
1(b)	$\begin{aligned} & 35-(7+8+8+5) \\ & \text { or } 35-28 \end{aligned}$	M1	Condone missing brackets
	7	A1	
1(c)	(£) 3 seen	D1	
	Their $(4 \times 8+2) \times$ Their (£) 3	M1	
	(£) 102	A1	SC1 for (£)105
1(d)	$\begin{aligned} & \text { Friday }+ \text { Saturday }+ \text { Sunday }=9 \\ & \text { and Friday } \leq 5 \text { and Saturday } \leq 5 \\ & \text { and Sunday } \leq 2 \end{aligned}$	B2	B1 for any two conditions correct
1(e)	$7 \times 2.5(\times 6)$ or 105	M1	
	$10 \times 3(\times 5)$ or 150	M1	
	Ray	A1	
1(f)	$21 \times(£) 4.50$ or (£) 94.5	M1	
	$($ Overtime $=) 4.5 \times 1.5$ or $(\mathfrak{f}) 6.75$	M1	or (Overtime $=) 4 \times 1.5$ or 6 (hours) oe
	Their $94.5+$ Their 6.75×4	M1dep	Their $94.5+$ Their 6×4.5 or Their 27×4.5
	(£) 121.50	A1	(£) 121.5 scores M1M1M1A0

Question	Answer	Mark	Comment

2(a)	25 to 30	D1	
2(b)	Healthy	D1	
2(c)	25	D1	
2(d)(i)	$83 \div 1.75^{2}$	M1	$83 \div 1.75^{2}$
	27(.10...)	A1	27(.10...)
2(d)(ii)	Overweight	D1ft	or ft from Their answer in part (d)(i)
2(e)	67	D1	
	90-91	D1	SC1 for any value(s) from healthy range ie, $67 \leq w \leq 91$ with no value(s) outside range
2(f)	70-71 seen	M1	
	8 or 9	A1	
2(g)(i)	$23=\mathrm{W} \div 1.8^{2}$	M1	
	$\begin{aligned} & (\mathrm{W}=) 23 \times \text { Their } 1.8^{2} \text { or } \\ & (\mathrm{W}=) 23 \times \text { Their } 3.24 \end{aligned}$	M1	
	74 (.52...)	A1	Accept 74 - 75 inclusive 73 - 76 inclusive implies M1M1
2(g)(ii)	BMI will be smaller or lower	B1	Accept more healthy, more underweight, less overweight, thinner, slimmer
	BMI is inversely proportional to height (squared)	B1	Accept convincing explanation based on formula and/or graph eg, BMI is smaller because you are dividing by a larger number scores B2 Accept an example given which justifies smaller BMI eg, $1.80 \rightarrow$ BMI 7.098 $1.90 \rightarrow$ BMI 6.37

Question	Answer	Mark	Comment

$\left.\begin{array}{|l|l|c|l|}\hline \text { 3(a) } & 5 & \text { B1 } & \\ \hline \text { 3(b) } & 6 \text { and } 7 & \text { B1 } & \\ \hline \text { 3(c) } & \text { Valid explanation } & \text { B1 } & \begin{array}{l}\text { Accept: Must be a multiple of four } \\ \text { Do not accept: Because even }\end{array} \\ \hline \text { 3(d) } & \begin{array}{l}\text { All four correct: } \\ 8,1 \\ 2,7 \\ 6,3 \\ 4,5\end{array} & \text { B3 } & \begin{array}{l}\text { Any two or three correct: B2 } \\ \text { Any one correct: } \\ \text { If none correct: }\end{array} \\ \hline \text { 3(e) } & 13 & \text { B1 for all four pairs } \\ \text { seen (any order, } \\ \text { anywhere) }\end{array}\right]$

Question	Answer	Mark	Comment

4(a)	Faster in Leeds or Slower in Paris	B1	
4(b)	3	B1	
4(c)	Moderate visibility	D1	oe
4(d)(i)	Sunday	D1	
4(d)(ii)	Saturday	D1	Accept -4
4(e)(i)	4	B1	M1
4(e)(ii)	Saturday and Paris	Leeds: 3, 6, 6, 5, 3 4(e)(iii)	Attempt to work out daily variation for Leeds or Paris
	Attempt tp work out an average value of daily variation for Leeds or Paris	M1	Leeds Mean $=23 \div 5$ or 3, 3, 5, 6, 6
	Paris Mean $=26 \div 5$ or 2, 2, 7, 7, 8 ft Their daily variations		
	4.6 and 5.2 or 5 and 7	A1	Allow 23 and 26
	Paris	With correct method	

Question	Answer	Mark	Comment

$\mathbf{5 (a)}$	58 or 59%	D1	
$\mathbf{5 (b) (i)}$	Microwave	D1	
$\mathbf{5 (b) (i i) ~}$	Home computer	D1	
$\mathbf{5 (b) (i i i) ~}$	Internet connection	D1	
$\mathbf{5 (c) (i)}$	Increases	D1	
$\mathbf{5 (c) (i i) ~}$	Cannot double when more than 50% already	D1	
$\mathbf{5 (d)}$	$95 \times 20 \div 100$ or $93 \times 25 \div 100$	M1	oe
	19 or 23.25	A1	or 19000000 and 23250000
	$19+23.25$	M1	or $19000000+23250000$
	4250000	A1	oe

MATHEMATICS (PILOT)
 93001/PM
 Unit 1 Functional Mathematics
 Data Book (Examination)

Specimen Paper (Curriculum Pathways Pilot) 2008

Instructions

- This copy of the Data Book is for use in the examination. It should not be given to candidates in advancel.

There is no source material printed on this page

Data Sheet for Holiday Jobs

These tables show the regulations for summer holiday jobs for people aged 13 to 18 years.

Work regulations for people aged 13 to 18 years

	Holiday Jobs: hours of work	
Age under 13	•	Legally not allowed to work
Age 13 to 14	\bullet	A maximum of 25 hours per week
	•	Up to 5 hours a day from Monday to Saturday
	• Up to 2 hours a day on Sunday	

Holiday Jobs: rates of pay	
Age under 16	\bullet
Age 16 to 17	\bullet
Age 18 and over	\bullet
Minimum wage wage $£ 3.00$ per hour $£ 4.25$ per hour	

Data Sheet for Body-Mass Index (Adults)

Body-Mass Index (BMI) is a way of comparing people using their height and body mass (weight).
It is calculated using the formula:

$$
\mathrm{BMI}=\frac{\text { body mass }}{\text { height }^{2}}
$$

Body mass is measured in kilograms.
Height is measured in metres.

The table shows the different ranges of BMI.

Classification	BMI range
Underweight	Less than 18.5
Healthy	18.5 to 25
Overweight	25 to 30
Obese	Over 30

Body-Mass Index (BMI) Graph for Adults

Data Sheet for Weather

These tables show the weather forecast for 5 days in Leeds and Paris.

Leeds

Day	Summary	Temperature		Wind speed (mph)	Visibility
		$\begin{aligned} & \text { Max Day } \\ & { }^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Min Night } \\ & { }^{\circ} \mathrm{C} \end{aligned}$		
Friday		4	1	7	Good
Saturday		2	-2	8	Poor
Sunday		5	-1	8	Poor
Monday		4	-1	10	Poor
Tuesday		3	0	5	Poor

Paris

Day	Summary	Temperature		Wind speed (mph)	Visibility
		$\begin{gathered} \text { Max Day } \\ { }^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & \text { Min Night } \\ & { }^{\circ} \mathrm{C} \end{aligned}$		
Friday		0	-6	8	Moderate
Saturday		3	1	6	Moderate
Sunday	$\bar{B},{ }_{1}^{\prime}, \ldots,$	7	-1	11	Good
Monday		6	-1	9	Good
Tuesday		6	-4	8	Moderate

